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A generalization of the Korn inequality which permits reduction of the proof 
of solvability of the problem of total shell energy minimization in some class 
of admissible displacements to the verification of some algebraic condition 

which the strains must satisfy, and to the proof of existence theorems for the 
solution (or to the verification of the equilibrium conditions). Existence theo- 
rems are proved by the scheme mentioned in the Novozhilov-Bolabukh shell 

theory [l] and in the Reissner theory [ 2, 33. 

1, Let Q,be the domain of the variables x = (tl, . . . . z%), and u = (ul, . . . . urn) 
a vector function, let us say that u E iv21 (Q) if ui E IFsi (Q), i = 1, . . . . m. 

Let the linear first order differential operators with variable coefficients 

EiO (u) = aijkaj, &’ i-l,..., N (f,i=#/azi) 

Ei (U) = Eio (u) + $'"j, i=l,...,N 

be given. We pose the question: Under what conditions on the operators 6~ (u) for any vec- 
tor function u E IFz’(Q) is the inequality generalizing the Korn inequality [4. 51 (see 

[5] in the References) iv 
‘ir 

II u lb,(n) Q Cl 
(2 

11 Ei (U) i/&n) + /I U i&(n) 0.1) 

valid. 
id 1 

Theorem 1. Let 8 be such that its closure $1’ is mapped holomorphically on 

some cube or sphere by using the mapping T (x) of the class C3 (Qe) such that the Jaco- 
bian 1 T’ 1 has the positive constant cT as lower bound. Let u$k 6% C2 (a’), bii E C (@I. 

Forming all possible first derivatives of the operators et0 (u) and extracting terms con- 
taining the second derivatives of the functions uj, we obtain the differential expressions 

8ip ~ ajkuj, kp’ f, (; zz d”f I &ri axj 

It is sufficient for the validity of (1.1) that the following algebraic condition be satis- 
fied : find functions MrtsiP E C’ (Q”) such that the identities 

U - my$tYp (u) G N@tzf%~ k 
t, ts- lh 1 1. P CL 2) 

hold. In other words, any second derivative of the functions uj can be expressed in terms 
of a linear combination of differential expressions Eip @z)_ The constant c1 in fl.1) de- 
pends on the norm of the functions aiik, Millin, b$ , respectively, in 6’2 (a~), Cl (QC), 
C (Qc), the norms of the mapping T in C3 (Qc), the constant cT and the dimensions of 
Q ( c1 increases as the dimensions decrease). 

The assertion evidently follows form Theorem 1. 
Theorem 2. let the domain Q be such that its closure is 
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t? = glc ,_, . . . u g,‘, ai n s2j L A, ifj 

and the conditions of Theorem 1 are satisfied for each domain s&, Then the inequality 

(1.1) holds, where the constant cl in (1.1) is the maximum of the constants for the do- 

mains Pi. 
Proof of Theorem I, We introduce the notation: D (Q) is the space of the 

f~damental functions, _I)’ (Q) is distribution space, ~~~?O(~) is the space of functions 

belonging to VV$ (3) and equal to zero on the boundary Q, W-1 (W) is the space dual 

to IV@?(Q) , iV(Q) CD’ (52). If f E 1)’ (Q), ‘p E D (a), the value off in the func- 
tion cp will be denoted by (f, q)o* 

We introduce the Hilbert space 5’ (Qf consisting of the distributions f E IV-* (9) such 

that f, i E W-1 (Q), i = 1, . .., n, and we assume 

(1.3) 

Lemma 1, L, (Q) is imbedded continuously in W-1 (Q) and in 1‘ (Qi, where 

II f , i IIW-‘(Q) G II f IIL, (Q)’ i--l...., ,b 

II f llw-1 (n) < II i IILl fi2). II f Ily,<*, < cz II I 111;. (*)s cz = n + 1 
Le m m a 2 (fundamental). The space Y (9) is imbedded continuously in L, (Q), i. e. 

if the distribution f E Y (a), then f E L, (52) and 

II f II&(n) G cc3 II f l/P(n) (1.4) 

Proof. let T be the mapping transferring Q into a cube (or sphere) G. We con- 

struct the mapping P of Y (Q) into Y (G) 
(pf, (Y)~ - Cf. rpQ,a 

fvp~ is the superposition of cp and T). It can be verified that P is a linear homeomor- 

phism between Y (W) and Y (G), where 

I\ Pf I\yIc, < C4 I/ f /lypp I1 p-‘g k(n) 4 ‘4 11 g fiY ((3 (1.5) 

Here c4 depends on the norm of T in Cs (QC) and the constant cr. It can be verified 

that P is also a linear homeomorphism between L, (52) and L, (G), and if f E LZ (n), 

g E L2 fGL then j/ Pf /‘/L,(c) q r.5 11 f /j&(Q), II p-% /IL&r) G 6 II fi h&) (1.6) 

Here cj depends on the norm of T in Cl (V) and the constant CT. 
Lemma 2 has been proved in [4] for an arbitrary domain with smooth boundary (and 

therefore for a sphere G also). A slight addition permits the proof of Lemma 2 for the 

cube G, i.e. if g E Y (G), then g E L, (G) and /I g llt,co, < CF II g llycG17 and (1.4) with 
the constant cs = C~C~CB follows from (1.5) (1.6). 

By condition (1.2) 
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The inequality (1.1) results from (1. 8) and the following assertion: let f E 6~ (Q)* 
g E Cl (81, then gf,i E W-l(Q), and 

I18f,rJw-l(al)Bllgljcl(,c,fffll,,,, 

3, Let the shell middle surface S be given by the equation r = r (x) which homeo- 
morphically maps s onto the domain B of the variables x=(+,xJ satisfying the con- 
dition of Theorem 2, the Lam4 coefficients by A,, A, E C* (Qc), A,, A, >, m > 0, 

m = const, the curvatures by RI-‘, Ram1 E Cl $1’). 
kt us investigate the solvability of the Novozhilov-Bolabukh shell equations Cl]. Let 

us introduce the space of displacement fields and the known functions 

111(Q) = {U 1 u = (II, w), u = (241, uz), u ETYz'(Q), w E w2z(Q)~ 

II u llH*(fJ) = (II u II&*, + I( '" ll~,qn,)'~ 

61= - A~-'zL:,~ -f- RI%,, 6, = - Az-%+ +- Ri’u, 
(2.1) 

q = AI-~u~~ - A,,,(A,Az)-lu~, co2 = Az-QL, 2 -- A,,1(A,4)-1~2 (2.2) 

TV = At-‘&,; - Al,a (A,A,)-” 6,, 3, = AZ-‘t$ ; , -I- A,,, (A,A,)-’ f’, (2.3) 

Let 8 denote the set of strains 

F1 = Al-lul,l f(A,A2)-‘A1,2~2 f Rl%, Q = Az-‘U~,~ -!- (A1-42)-1-4z,l% f (2.4) 

Rf’w 

x1 = AI-‘@~,~ + &A,)-‘Al,,-%, x2 = AZ-%,,, + (A,AJIA& (2.5) 

co = q _t mpt t = z-1 (t* + ‘62 + Rl%, + Rz-lo,) 

8 = (El, F2, w, Xl, x2, f), II8 Ilj=&) = b (El% -t_ &22 + 02 +x12+ x22+ za) dx 3 ‘la 

6 

Theorem 3. For any field U E Hl (Q) the inequality 

flu II&(*,< c7 ~Il~liZ,~n,l+Il~1124,~n,+ llw Ixw*P (2.6) 

holds. 
PI oof. Forming all possible first derivatives of the strains a,, e2, w and extracting 

terms containing the second derivatives of the functions ul, +. We obtain differential 
expressions satisfying condition (1.2) 

e,, ES AI-‘ul 11, cl2 f A I%~ 12, %1 zz AZ-‘u2 21,, Ez2 F AZ-‘us 22 

ml1 z AI-~Q~ + Az-‘Q~, & = Ai”u,,,,‘+ -42-Q522 ’ 

In fact, u1 11 = Al~llr u~,~~= A1~12, ul,*2 = A,o,, - AI-lA&,, , the derivatives of 
up are expressed analogously, hence, the inequality 

II u llw**(n) =G C8 
[S 

{El2 -i-Q2 + w2) dx 4- ll “II;: -+ II w II&) 
a 1 ‘h 

(2.7) 

follows from Theorem 2. 
Since the strains XI, s, z contain the senior terms - As-=~~,II, - A~-%LJ~~~~ 

- (rl~A&‘w .12, respectively, we obtain (2.6) from (2.7). 
Let us introduce the total energy functional CD, (U) = El (U) - Ll 0.9, where EI W 

is the strain energy [ 11. and L, (U) is the work of the external forces (a linear functional 
continuous in Ii, (Q) ). 

Let HI” (a) denote the subspace of HI $2) consisting of fields U such that E=O. It is 
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known [6] that HI’ 18) consists of displacement fields of the shell as a rigid whole. 
Theorem 4. In order for the problem of minimizing the functional alI,, (u) to have 

a solution in the space of admissible displacement fields ZZ1* (Q) c Hz (52) , it is neces- 
sary and sufficient that the equilibrium conditions be satisfied : for any field U E RI0 x 

(Q) s 111” (Q)fl HI* (Q). L, (U) = 0; the solution is determined to the accuracy of an 
arbitrary field from RI” (a). In particular, if Z?1° (Q) = 0 (i. e., the boundary conditions 
prevent the displacement of the shell as a rigid whole), the equilibrium condition is 
satisfied trivially, and the solution exists and is unique. 

Proof . We form the factor-space H (~2) = HI* (B) i RI’ (Q) and we define the 
norm in ZZ (Q) as follows 

II u llH(q, f [El (u)]':' 

Considering the opposite, and using (2.6), as well as the inequality E, (u) > CQ II E ll&cra,, 

it can be shown that the functional L,(U) is continuous in ZZ (12) from which the asser- 

tion of the theorem follows p]. 

3, let us investigate the solvability of the Reissner shell equations [Z, 33. We intro- 
duce the space of displacement fields 

Hs (9 = 0'lV = (~1, ~2, w, 61, 6,), V E Wal (8)) 

The notation of (2.2), (2.3) is retained, and (2.4), (2.5) specify the strains 81. %, ~1, 

XJ 
~1’ z 71 + RI-roz, ~a’ E ra + Rz-‘or 

o1fo2 'h2 

cl2 I= _ + 48 (Rz-’ - RI-‘) ~1’ - zz” + 
01-+02 

2 
~ (110 - RI”) 2 

I 

Z1° + 59 
x12 = 2 

--+2-l + Hli') (o1+ 4 

lIdL,(n)+ (812 +&as + elza + xl2 + x2? + ~1%~ + r12 + ~9) dx 
1 

‘i. 

ha 

Here h is the shell thickness. It can be proved that if 

max {hR1-‘, hRz-‘} < i - y (3.1) 

(Y is the Poisson’s ratio), then the strain energy of a Reissner shell is a positive definite 

quadratic form of the strain en. 

Theorem 5. For any field V E H, (Q) the inequality 

is valid. 
II v II Wp’ (Cl) < ‘10 (11 ‘R \l;,(Ci) + 11 v it, (,)fir G-L 2) 

Proof. let us differentiate the strains cl, es, x1, x2, yl, yz and extract the terms 

containing the second derivatives of the functions a,, us, 6,, 6,, W. All the second 
derivatives of the functions u,, u2, f&, 6,, w except ur,ss, ua,il, 6,,,,, 6,,,, can be ex- 
pressed in terms of the differential expressions obtained in this manner. 

Differentiating ~~~ and x12 with respect to zz and transposing terms containing tll,zz 

and 6, “s ._ to the left, we obtain the system 
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g (Rz-’ - 121-l) /4a-1ti1, s2 = bl , l/4 (H1-1 - Ha-‘) Aa-‘Y, ss + ‘/aAa-l-‘61, zz = bs 

to determine them. The right sides b It 4 in (3.3) are composed of the derivatives al- 

ready found. The system (3.3) is solvable under the condition (3.1). conditions (1.2) are 
satisfied, and (3.2) follows from Theorem 2. 

Let Ha” (S2) denote the subspace of H, (8) which consists of fields V such that aR = 
0. Then the functions el, 6, are expressed in terms of ul, %, w by means of (2. l), 

hence Hz” (8) has the form 

An existence theorm holds for the solution which is completely analogous to Theorem 4. 
Other shell equations, [8] say, can also be investigated by the same scheme. 
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